Specific expression of proton-coupled oligopeptide transporter 1 in primary hepatocarcinoma-a novel strategy for tumor-targeted therapy
نویسندگان
چکیده
Proton-coupled oligopeptide transporter 1 (PEPT1) is a membrane protein which expressed predominantly in intestine and recognized as the target of dietary nutrients (di/tripeptide) or peptidomimetic drug for delivery. The information on the existence of PEPT1 in carcinomas were limited. Our study aimed to investigate the expression profile and transport activity of PEPT1 both in human hepatocarcinoma tissues and cell lines. Western blotting and an immunofluorescence assay revealed the high level of PEPT1 protein expression in hepatocarcinoma Bel-7402, SMMC-7721, HepG2, HEP3B, SK-HEP-1 cell lines. Quantitative real time PCR showed the mRNA expression of PEPT1 in Bel-7402, SMMC-7721, HepG2, HEP3B, SK-HEP-1 cells. High level PEPT1 expression in hepatocarcinoma patient samples were observed by Immunohistology and showed a significant correlation between protein level and pathological grade. Functional activities were also studied using D-Ala-Lys-AMCA (a substrate of peptide transporter) in above five hepatocarcinoma cell lines. The uptake tests performed by fluorescent microscopy suggested that PEPT1 can transport both D-Ala-Lys-AMCA into the hepatocarcinoma cells and the uptake can be competitively inhibited by three PEPT1 substrates (Gly-sar, Gly-gln and Glyglygly). In conclusion, our findings provided the novel information on the expression and function of PEPT1 in human hepatocarcinoma and expanded the potential values for tumor specific drug delivery.
منابع مشابه
Targeting PEPT1: a novel strategy to improve the antitumor efficacy of doxorubicin in human hepatocellular carcinoma therapy
Proton coupled oligopeptide transporter 1 (PEPT1) is a member of the peptide transporter superfamily and plays important role in the absorption of oligopeptide and peptidomimetic drugs. Our previous research verified that PEPT1 expressed specifically in human Hepatocellular carcinoma (HCC) tissue and cell lines and showed potential transport activity to be a new candidate of the tumor therapeut...
متن کاملExpression and Regulation of the Proton-Coupled Oligopeptide Transporter PhT2 by LPS in Macrophages and Mouse Spleen
Membrane transporter PhT2 (SLC15A3), which belongs to the proton-coupled oligopeptide transporter family, mediates the transport of di/tripeptides and histidine utilizing an inwardly directed proton gradient and negative membrane potential. The aim of this study was to elucidate the molecular expression of PhT2 in macrophages and mouse tissues and to explore the regulation of PhT2 by lipopolysa...
متن کاملMonte Carlo calculations of dose distribution for the treatment of gastric cancer with proton therapy
Proton therapy is a common form of external radiation therapy based on the manipulation of Bragg peak of this beam, it can treat the tumor by delivering high levels of doses to it, while protecting surrounding healthy tissues against radiation. In this work, the dose distribution of proton and secondary particles such as neutrons, photons, electrons and positrons in gastric cancer proton therap...
متن کاملComparison of c-Kit expression between primary and metastatic melanoma of skin and mucosa
Background: Melanoma causes the greatest morbidity and mortality of all skin cancers. Mucosal melanoma is a rare but highly aggressive neoplasm. According to previous studies the prevalence of KIT mutations in acrallentiginous and mucosal melanomas is relatively low (less than 15–20%), but it can have profound therapeutic implications for localized high risk or metastatic diseases. Our goal w...
متن کاملSynthesis and Characterization of a Novel Fe3O4-SiO2@Gold Core-Shell Biocompatible Magnetic Nanoparticles for Biological and Medical Applications
Objectives: The study of core-shell magnetic nanoparticles has a wide range of applications because of the unique combination of the nanoscale magnetic core and the functional shell. Characterization and application of one important class of core-shell magnetic nanoparticles (MNPs), i.e., iron oxide core (Fe3O4/γ-Fe2O3) with a silica shell and outer of gold (Fe3O4-SiO2@Gold (FSG)) in Boron Neut...
متن کامل